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A FAMILY OF AXISYMMETRIC VORTEX FLOWS WITH A SURFACE DISCONTINUITY 
OF THE BERNOULLI CONSTANT* 

L. A. KOZHURO 

One-parameter class of steady axisymmetric vortex flows of incompressible inviscid 
fluid With vorticity satisfying the Prandtl-Batchelor condition is considered.The 
Bernoulli constant becomes discontinuous and changes by a given quantity at the 
surface separating the external potential stream from the vortex flow region. De- 
termination of the stream function is reduced to solving a system of two nonlinear 
integral equations for the boundary of the vortex flow region and of intensity of 
the vortex sheet contained in it. Results of numerical calculations are presented. 

Existence of steady axisymmetric vortex rings similar to a circular vortex line and 
Hill's spherical vortex was established earlier in /l-33/, where flows of this type were 
described. A numerical solution linking these asymptotic results was obtained in /4/ for a 
set of vortex rings. Vortex flow inside the core of each ring is characterized by the const- 
ancy of the ratio of vorticity to the distance from the axis of symmetry, with the Bernoulli 
constant continuous in the stream. The introduced in /4/ parameter c (the dimensionless 
mean radius of the vortex ring core) which distinguishes the unique solution from the set 
ranges from zero (circular vortex) to f/z (Hill's spherical vortex). 

The considered here set of vortex flows is characterized by parameter a>vi and the 
discontinuity of the Bernoulli constant at the boundary of vortex flow. One of the limit 
cases of this set of flows is also Hill's spherical vortex. The assumption of existence of 
a set of axisymmetric vortex flows with discontinuity of the Bernoulli constant adjoining 
Hill's vortex was expressed in /5/. Existence of a similar one-parameter class of plane 
vortex flows was established in /6/, where preliminary results of investigation of the axis- 
ymmetric class of vortex flows were also presented. Analysis of such flows is further re- 
fined below. 

1. Consider a uniform at infinity steady axisymmetric flow of incompressible inviscid 
fluid, which within some bounded region Q is vertical, and outside it potential. Let the 
vorticity of the vortex flow satisfy the Prandtl-Batchelor condition, i.e. in the cylindric- 
al system of coordinates x, rr cp 

rot v = (0, 0, Wr) 

where v is the fluid velocity and W a constant. All quantities are dimensionless with the 

unperturbed stream velocity taken as the unit of velocity, and the maximum longitudinal di- 

mension of the vortex flow region as the unit of length. The system of coordinates in the 

axial plane is shown in Fig.1. Let the Bernoulli constant become discontinuous of the stream 

surface S which is the boundary of region D . The Bernoulli integral and the continuity 

of pressure imply that then the condition 

vrz - vi2 = A (1.1) 

must be satisfied on surface s. Here A is a constant equal to the doubled Bernoulli con- 

stant, ad subscripts e and i relate to external and internal limit values on Surface s. 
For the Stokes stream function 10 in its conventional form 

! 1 w 1 ag v= yT-ar’---y-ar’ O) (1.2) 

we have on the basis of the above the following problem: determine for a given value of para- 

meter A >O parameter W, the vortex flow region boundary S, and the stream function Q 

that satisfies the equation 

inside n 
outside Q 

.~ -. 
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and the following conditions: 

rp -c '12 r= as z*++-•cc (1.3) 

$1~ = const; I Vg lee - I VIP iI* = +A 

where V is the Hamiltonian, and the last condition 
0 
0 fJ 

follows from (1.1). 

Fig.1 

2. For an axisymmetric flow without azimuthal motion the vector potential is 

A = (0. 0,$/r) (2.1) 

which for a given distribution of vorticity (D = rotv satisfies Poisson's equation and can, 
consequently, be written in the form 

A(rJ=&sss $- dli (r’), R = [(x-x’)’ + r* +- r’* - 2rr’ Cos @I’/*, 6 = cp - cp’ (2.2) 

where R is the distance between points r and r'of integration , and the integral is taken over 
the volume occupied by the fluid. 

Discontinuity of the Bernoulli constant at the boundary of vortex flow means that S is 
a vortex surface of intensity 0 = -(v, -vi). In conformity with (2.1) and (2.2) and allow- 
ance for the first of conditions (1.3) the stream function is of the form 

(2.3) 

In a Cartesian system of coordinates I, y. I with origin at point O(Fig.1) and the Oy 
-axis coinciding with the Or-axis of a cylindrical system of coordinates 5, r, cp the vector 
potential coordinates is the direction of the Oz-axis are at cp = 0 

and represent the potentials of continuous distribution and of the simple layer, respectively. 
Let the curvature of surface S be finite at all points, except points 0 and C (Fig.1). 
When rp=O and y=r, functions A, and Aa coincide, respectively, with d17 and ilzc, 
hence, using the known properties of potentials and taking into account the axial s-try 
of the flow, it is possible to conclude that functions A, and A,, and the first order part- 
ial derivatives of function Al are continuous at transition through surface S, while the 
derivatives of function -4s become discontinuous at that surface. Using the relations of 
limit values of derivatives of the simple layer potential taken along the normal to the sur- 
face, we find that at all points of surface S, except 0 and C, 

where y is the angle between the outer normal at the considered point of the surface and 
the radius vector drawn from that point to the integration point. 

Assuming that surface S is the stream surface, i.e. that the stream function on it is 
constant, from (1.2) and (2.3) we obtain 

where n, is the projection of the outer normal to surface S on the or-axis. 
The last of conditions (1.3) assumes the form 

where L’ is the curve L (defined by the intersection of surface S with the axial plane 
cp = const) with the exclusion of points 0 and C. 

The second of conditions (1.3) yield the equation 
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We have, thus, obtained a system of Eqs. (2.4) and (2.5) in unknown functions o,(x) and 
f(z), (r = f(2) is the equation of curve L), which contains the unknown parameter TV. 

Letus considertheboundaryconditions thatmustbe satisfiedbyfunctions j and o. Boundary 
of thevortexflow atitsintersectionpoints 0 and C with the axis ofsymmetrywhenA#O must have 
cusps,withzeroangles ofpointing,i.e. thederivativeof the functionmustbe zero atthese points , 
since otherwise the internal and external limit flow velocities would vanish at these points, 
which would contradict condition (1.1). Since at the inner side of the cusp surface Sthe 
velocity vanishes, hence it follows from (1.1) that when A>O, vi=0 at points 0 and 

c, i.e the cusps are directed outward from surface S and U, = Jf/. We thus have 

f(0) = f(1) = f, (0) = f% (1) = 0, w (0) = 0 (1) = -I/a 

1/K. 
Expressions for parameter w in terms of f and o are obtained from the condition u,, (0) = 

For this we consider at some point Nof the axis of symmetry the velocity dependent on 
the vortex surface S 

It can be shown (by integrating by parts) that 

Hence velocity (2.6), after differentiation with respect to r and integration with res- 
pect to angle 8, assumes the form 

We shall prove that when the integral 

I(O)= + \ g cl1 (Rn2 =x'a -+ r’2) 
i 

is convergent, then as point N is approaching point 0 from outside the CUSP 

Convergence of the integral 1(O) implies that for any arbitrary S>O there exists an 
e-neighborhood of point 0 for which 1 I(0) 1~~ 1 < 6 1.7 , where 

and L, is the part of curve L that belongs to the s-neighborhood of point 0. By virtue 

of the integrand continuity we have for fairly small a 

(RB = (a’ -a)* + r’*) 

limZ(u) =Z(O), a-+0 (2.7) 

Since point N is outside the cusp of surface s, we have in the small neighborhood of 

point 0, R>R, and, consequently, I Ito.) IL, I < I I(O) IL, I. As the result we have 

II(a)-~(0)I=I1(a)JL-LI-~(O)lL-Le+~( )I (J Le-l(0)ILe( dl~(~)IL-L,-~(0)IL-Lelf2/1(0)IL,1~~ 

which proves (2.7). 
Note that convergence of the improper integral I(0) is not only the sufficient but, also, 

the necessary condition of existence of finite limits of velocity at point 0. It can be 

shown that when integral I(0) is divergent, the velocity v(N) infinitely increases aspoint 
N approaches zero. 

With allowance for (2.7) we can represent the external flow velocity at point 0 as 

(2.8) 

3. After some transformations, Eqs.(2.4), (2.5), and (2.8) assume the form 



A family of axisyrmnetric vortex flows 67 

A 7=-h {GA- O)’ CR” 6 dS -1. + 6 0’ co8 6 [r, (32 - x’) I- r’ ~0s 6 - r] Hma as + (3.1) 
s S 

w- ’ * 

XT N 
r’ (r’ - r co8 6 + r, co9 6 (z - x’)llt-J dR 

b 
I 

rAL~Sy~i+dL$#f..AdS 

S 

: or* (1 + T.&q’,‘* 
ax i- + \ 

(ri + I*)“* 
dz 

‘0 

(3.2) 

(3.3) 

0. = f (4, r’ = f (z’)) 
When A -0 the solution of this system is Bill's spherical vortex 

f(s) = [Y, - (z - 1 /#]'I, w (2) E 0, u;' = -30 

- 3r* ('Ia -9% p <'I% 
~(~~r)=(l/,r~(i-l/~p-s), p>'/r (p'= (L- I/# + r*) 

The system of ~gs.(3.1)- (3.3) was solved numerically for A>0 using iteration methcd, 
subsequent approximations of functions f and o were derived from Eqs.(3.1) and (3.2)whose 

right-hand sides were calculated using preceding approximations, and parameter W was deter- 
mined from Eg.(3.3). Functions f and e were assumed axisynunetric relative to the straight 
line z = '1,. For the canputation of integrals in terms of angle B we used the knownformulas 
in which velocities and stream functions of the vortex ring are expressed in tenasofccmplete 
elliptic integrals of the first and second kind. Singularities at (z',r')=(z,r) were elimin- 
ated by analytic integration over a small neighborhood of point (z,r). Cubic splineswereused 
for interpolating functions f and o. To reduce the computation time each spline node was 
provided with its own integration grid so as to have at its nodes the parameter of ccnnplete 
elliptic integrals assume apriori specifiedvalues. This had enabled us to use tables of 
ccmplete elliptic integrals in integration. 

At the beginning with A=O,Oi we obtained a flow close to Hill's vortex. Subsequent 
solutions were obtained using previous solutions, changed in the required direction, as the 
zero approximations. Computations were discontinued when five significant digits were the 
same in two consecutive approximations. For AQ 0,4 20-30 iterations were necessaryforthis. 
Since the number of necessary iterations increases with increase of parameter A and ensuing 
growth of required canputer time, no solutions were sought for A>O,B . boundary of the 
region of vortex flow f and the vortex surface intensity e calculated for several values of 
parameter A are shown in Fig.2, where the numbers relate to the values of A tabulated as 
follows: 

M A W r* a 

; g.05 
-xl 075 
-40,s 0.4255 : 443 

43 8:: 
-59.0 0,3990 1:535 
-195.3 O,iSiS 1.931 

, Maximum values r. of functions f and of para- 
meter a introduced in:/4/ in the investigation 

1 of set of vortex rings using formula So= nr$a', 
where S, is the area of axial cross section of 
the fluid vortex motion and r0 is the mean 
radius of the region cross section at the place 
of its maximum bulging, are also shown there. 
For vortex flows considered here r, = r, 12. 

It will be seen that as the jump of the 

-0.25 
Bernoulli constant increases parameter a mono- 
tonically,increases from 1/Z. In the case of 
one-parameter set of vortex rings /4/ parameter 
a changes from zero (circular vortex line) 

0 
to +0, (Hill's spherical vortex). 

0.25 X 0 0.25 I Thus the set of vortex flows with discont- 
inuity of the Bernoulli constant joins the set 

Fig.2 of vortex rings when a=Jfz. 
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Boundaries of axial cross sections of the vortex flow regions are also shown in Fig.2 
for several values of parameter a . Curves 5-S correspond to c* = 1,35. 1.0.0, 0.L'. The linear 
dimensions are normalized with respect to fQ. The circular vortex line passes through point 
s - o,r=i. For O<a< VF the vortex flow region is of toroidal form, when 2 %1/z it ad- 
joins the axis of symmetry, and the region boundary at intersection points with the latter 
has singular points. These two sets are linked by Hill's spherical vortex (a _ U'L, whose 
vortex flow region is attached to the axis of symmetry, but owing to the absence of discon- 
tinuity of the Bernoulli constant (A 7 (J) , it has a smooth boundary. 

The author thanks G. I. Taganov for formulating the problem and V. 8. Sadovskii for con- 
stant interest in this work and valuable remarks. 
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